III B.Tech - II Semester – Regular Examinations – JUNE 2023

VLSI DESIGN

(ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.			
					Marks			
UNIT-I								
1	a)	Describe a Verilog module for full	L2	CO1	7 M			
		subtractor using structural modeling.						
	b)	Describe Verilog module for 4 to 1 Mux	L2	CO1	7 M			
		using gate level modeling.						
		OR						
2	a)	Discuss a Verilog code for 2 to 4 decoder	L2	CO1	7 M			
		using data flow modeling.						
	b)	Discuss a Verilog code for half adder using	L2	CO1	7 M			
		gate level modeling.						
		UNIT-II						
3	a)	Realize a boolean functions	L3	CO2	7 M			
		$F1(A, B, C) = \sum m(1, 2, 5, 7)$ and						
		$F2(A, B, C) = \sum m(0, 3, 4, 6)$ using PAL.						
	b)	Demonstrate the different types of FPGA	L3	CO2	7 M			
		architecture with neat diagram.						

		OR						
4	a)	How to realize the Boolean expression	L3	CO2	7 M			
		X = AB + AB'C' + BC' and						
		Y = BC + A'BC' + ABC using PAL.						
	b)	Distinguish FPGA and CPLD.	L3	CO2	7 M			
UNIT-III								
5	a)	Explain the fabrication steps involved in	L4	CO3	7 M			
		NMOS transistor with neat sketches.						
	b)	Compare CMOS and BICMOS	L4	CO3	7 M			
		Technologies.						
	r	OR						
6	a)	Analyze characteristics of enhancement	L4	CO3	7 M			
		mode nMOS transistor.						
	b)	Compare NMOS and GaAs Technologies.	L4	CO3	7 M			
		UNIT-IV						
7	a)	Derive the Drain current equation for three	L4	CO3	7 M			
	,	regions of nMOS transistor and draw its V-I						
		characteristics.						
	b)	Analyze the stick diagram for 3 input NOR	L4	CO3	7 M			
		gate.						
		OR		ı				
8	a)	Derive the required ratio between Zp.u. and	L4	CO3	7 M			
		Zp.d. if an nMOS inverter is to be driven						
		from another nMOS inverter.						
	b)	Analyze the stick diagram for the following	L4	CO3	7 M			
		function						
		Y = (A+B)C						

UNIT-V								
9	a)	Explain the various factors involved in	L4	CO4	7 M			
		limits of scaling of devices.						
	b)	Realize a 2:1 MUX using Pass Transistor	L3	CO4	7 M			
		logic.						
OR								
10	a)	Explain the scaling factors involved in Full	L4	CO4	7 M			
		Scaling method in VLSI.						
	b)	Realize a 2:1 MUX using Transmission gate	L3	CO4	7 M			
		logic.						